Uncrossed actions of feline corticospinal tract neurones on lumbar interneurones evoked via ipsilaterally descending pathways.

نویسندگان

  • E Jankowska
  • K Stecina
چکیده

Effects of stimulation of ipsilateral pyramidal tract (PT) fibres were analysed in interneurones in midlumbar segments of the cat spinal cord in search of interneurones mediating disynaptic actions of uncrossed PT fibres on hindlimb motoneurones. The sample included 44 intermediate zone and ventral horn interneurones, most with monosynaptic input from group I and/or group II muscle afferents and likely to be premotor interneurones. Monosynaptic EPSPs evoked by stimulation of the ipsilateral PT were found in 12 of the 44 (27%) interneurones, while disynaptic or trisynaptic EPSPs were evoked in more than 75%. Both appeared at latencies that were either longer or within the same range as those of disynaptic EPSPs and IPSPs evoked by PT stimuli in motoneurones, making it unlikely that premotor interneurones in pathways from group I and/or II afferents relay the earliest actions of uncrossed PT fibres on motoneurones. These interneurones might nevertheless contribute to PT actions at longer latencies. Uncrossed PT actions on interneurones were to a great extent relayed via reticulospinal neurones with axons in the ipsilateral medial longitudinal fascicle (MLF), as indicated by occlusion and mutual facilitation of actions evoked by PT and MLF stimulation. However, PT actions were also relayed by other supraspinal or spinal neurones, as some remained after MLF lesions. Mutual facilitation and occlusion of actions evoked from the ipsilateral and contralateral PTs lead to the conclusion that the same midlumbar interneurones in pathways from group I or II muscle afferents may relay uncrossed and crossed PT actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncrossed actions of feline corticospinal tract neurones on hindlimb motoneurones evoked via ipsilaterally descending pathways.

Despite numerous investigations on the corticospinal system there is only scant information on neuronal networks mediating actions of corticospinal neurones on ipsilateral motoneurones. We have previously demonstrated double crossed pathways through which pyramidal tract neurones can influence ipsilateral motoneurones, via contralaterally descending reticulospinal neurones and spinal commissura...

متن کامل

Premotor interneurones contributing to actions of feline pyramidal tract neurones on ipsilateral hindlimb motoneurones.

The aim of the study was to analyse the potential contribution of excitatory and inhibitory premotor interneurones in reflex pathways from muscle afferents to actions of pyramidal tract (PT) neurones on ipsilateral hindlimb motoneurones. Disynaptic EPSPs and IPSPs evoked in motoneurones in deeply anaesthetized cats by group Ia, Ib and II muscle afferents were found to be facilitated by stimulat...

متن کامل

Neuronal relays in double crossed pathways between feline motor cortex and ipsilateral hindlimb motoneurones.

Coupling between pyramidal tract (PT) neurones and ipsilateral hindlimb motoneurones was investigated by recording from commissural interneurones interposed between them. Near maximal stimulation of either the left or right PT induced short latency EPSPs in more than 80% of 20 commissural interneurones that were monosynaptically excited by reticulospinal tract fibres in the medial longitudinal ...

متن کامل

Ipsilateral actions of feline corticospinal tract neurons on limb motoneurons.

Contralateral pyramidal tract (PT) neurons arising in the primary motor cortex are the major route through which volitional limb movements are controlled. However, the contralateral hemiparesis that follows PT neuron injury on one side may be counteracted by ipsilateral of actions of PT neurons from the undamaged side. To investigate the spinal relays through which PT neurons may influence ipsi...

متن کامل

Neuronal basis of crossed actions from the reticular formation on feline hindlimb motoneurons.

Pathways through which reticulospinal neurons can influence contralateral limb movements were investigated by recording from motoneurons innervating hindlimb muscles. Reticulospinal tract fibers were stimulated within the brainstem or in the lateral funiculus of the thoracic spinal cord contralateral to the motoneurons. Effects evoked by ipsilaterally descending reticulospinal tract fibers were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 580 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007